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Abstract. Rough set theory has been considered as a useful tool to deal
with inexact, uncertain, or vague knowledge. However, in real-world,
most of information systems are based on dominance relations, called
ordered information systems, in stead of the classical equivalence for
various factors. So, it is necessary to find a new measure to knowledge
and rough set in ordered information systems. In this paper, we address
uncertainty measures of roughness of knowledge and rough sets by intro-
ducing rough entropy in ordered information systems. We prove that the
rough entropy of knowledge and rough set decreases monotonously as the
granularity of information becomes finer, and obtain some conclusions,
which is every helpful in future research works of ordered information
systems.

Keywords: Rough set, Information systems, Dominance relation, Rough
entropy, Rough degree.

1 Introduction

The rough set theory, proposed by Pawlak in the early 1980s[1], is an extension
of the classical set theory for modeling uncertainty or imprecision information.
The research has recently roused great interest in the theoretical and application
fronts, such as machine learning, pattern recognition, data analysis, and so on
[2-6].

In Pawlak’s original rough set theory, partition or equivalence (indiscernibility
relation) is a important and primitive concept. However, partition or equivalence
relation, as the indiscernibility relation in Pawlak’s original rough set theory, is
still restrictive for many applications. To address this issue, several interesting
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and meaningful extensions to equivalence relation have been proposed in the
past, such as tolerance relations [17], similarity relations [16], others [18-20].
Particularly, Greco, Matarazzo, and Slowinski[7-11] proposed an extension rough
sets theory, called the dominance-based rough sets approach(DRSA) to take into
account the ordering properties of attributes. This innovation is mainly based on
substitution of the indiscernibility relation by a dominance relation. In DRSA
condition attributes and classes are preference ordered. And many studies have
been made in DRSA[12-15].

On the other hand, the concept of entropy, originally defined by Shannon in
1948 for communication theory, gives a measure of uncertainty about the struc-
ture of a system. It has been useful concept for characterizing information content
in a great diversity of models and applications. Attempts have been made to use
Shannon’s entropy to measure uncertainty in rough set theory [21-24]. Moreover,
information entropy is introduced into incomplete information systems, and a
kind of new rough entropy is defined to describe the incomplete information
systems and roughness of rough set. While, most of information systems are
based on dominance relations, i.e., ordered information systems. Hence, consid-
eration of the uncertain measure about entropy in ordered information systems
is needed. This paper discussed the problem mainly.

In this paper, we address uncertainty measures of roughness of knowledge
and rough sets by introducing rough entropy in ordered information systems. We
prove that the rough entropy of knowledge and rough set decreases monotonously
as the granularity of information becomes finer, and obtain some conclusions,
which is every helpful in future research works of ordered information systems.

2 Rough Sets and Ordered Information Systems

The following recalls necessary concepts and preliminaries required in the sequel
of our work. Detailed description of the theory can be found in [4,15].

The notion of information system (sometimes called data tables, attribute-
value systems, knowledge representation systems etc.) provides a convenient tool
for the representation of objects in terms of their attribute values.

An information system is an ordered quadruple I = (U, A, F ), where U =
{x1, x2, · · · , xn} is a non-empty finite set of objects called the universe, and
A = {a1, a2, · · · , ap} is a non-empty finite set of attributes, such that there
exists a map fl : U → Val

for any al ∈ A, where Val
is called the domain of the

attribute al, and denoted F = {fl|al ∈ A}.
In an information systems, if the domain of a attribute is ordered according

to a decreasing or increasing preference, then the attribute is a criterion.

Definition 2.1. An information system is called an ordered information sys-
tem(OIS) if all condition attributes are criterions.

Assumed that the domain of a criterion a ∈ A is complete pre-ordered by an
outranking relation �a, then x �a y means that x is at least as good as y
with respect to criterion a. And we can say that x dominates y. In the following,
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without any loss of generality, we consider criterions having a numerical domain,
that is, Va ⊆ R(R denotes the set of real numbers).

We define x � y by f(x, a) ≥ f(y, a) according to increasing preference, where
a ∈ A and x, y ∈ U . For a subset of attributes B ⊆ A, x �B y means that x �a y
for any a ∈ B, and that is to say x dominates y with respect to all attributes in
B. Furthermore, we denote x �B y by xR≥

By. In general, we denote a ordered
information systems by I� = (U, A, F ). Thus the following definition can be
obtained.

Definition 2.2. Let I� = (U, A, F ) be an ordered information, for B ⊆ A,
denote

R�
B = {(x, y) ∈ U × U |fl(x) ≥ fl(y), ∀al ∈ B};

R�
B are called dominance relations of ordered information system I�.

Let denote

[xi]
�
B = {xj ∈ U |(xj , xi) ∈ R�

B}
= {xj ∈ U |fl(xj) ≥ fl(xi), ∀al ∈ B};

U/R�
B = {[xi]

�
B|xi ∈ U},

where i ∈ {1, 2, · · · , |U |}, then [xi]
�
B will be called a dominance class or the gran-

ularity of information, and U/R�
B be called a classification of U about attribute

set B.
The following properties of a dominance relation are trivial by the above

definition.

Proposition 2.1. Let R�
A be a dominance relation.

(1) R�
A is reflexive,transitive, but not symmetric, so it is not a equivalence

relation.
(2) If B ⊆ A, then R�

A ⊆ R�
B.

(3) If B ⊆ A, then [xi]
�
A ⊆ [xi]

�
B

(4) If xj ∈ [xi]
�
A, then [xj ]

�
A ⊆ [xi]

�
A and [xi]

�
A = ∪{[xj ]

�
A |xj ∈ [xi]

�
A}.

(5) [xj ]
�
A = [xi]

�
A iff f(xi, a) = f(xj , a) (∀a ∈ A).

(6) |[xi]
�
B| ≥ 1 for any xi ∈ U .

(7) U/R�
B constitute a covering of U , i.e., for every x ∈ U we have that

[x]�B 	= φ and
⋃

x∈U [x]�B = U .
where | · | denote cardinality of the set.

For any subset X of U , and A of I� define

R�
A(X) = {x ∈ U |[x]�A ⊆ X}; R�

A(X) = {x ∈ U |[x]�A ∩ X 	= φ},

R�
A(X) and R�

A(x) are said to be the lower and upper approximation of X with

respect to a dominance relation R�
A . And the approximations have also some

properties which are similar to those of Pawlak approximation spaces.
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Proposition 2.2. Let I� = (U, A, F ) be an ordered information systems and
X, Y ⊆ U , then its lower and upper approximations satisfy the following prop-
erties.

(1) R�
A(X) ⊆ X ⊆ R�

A(X).

(2) R�
A(X ∪ Y ) = R�

A(X) ∪ R�
A(Y );

R�
A(X ∩ Y ) = R�

A(X) ∩ R�
A(Y ).

(3) R�
A(X) ∪ R�

A(Y ) ⊆ R�
A(X ∪ Y );

R�
A(X ∩ Y ) ⊆ R�

A(X) ∩ R�
A(Y ).

(4) R�
X(∼ X) =∼ R�

A(X); R�
A(∼ X) =∼ R�

A(X).

(5) R�
A(U) = U ; R�

A(φ) = φ.

(6) R�
A(X) ⊆ R�

A(R�
A(X)); R�

A(R�
A(X)) ⊆ R�

A(X).

(7) If X ⊆ Y , then R�
A(X) ⊆ R�

A(Y ) and R�
A(X) ⊆ R�

A(Y ).
where ∼ X is the complement of X .

Definition 2.3. For a ordered information system I� = (U, A, F ) and B, C ⊆ A.

(1) If [x]�B = [x]�C for any x ∈ U , then we call that classification U/R�
B is

equal to R/R�
C , denoted by U/R�

B = U/R�
C .

(2) If [x]�B ⊆ [x]�C for any x ∈ U , then we call that classification U/R�
B is

finer than R/R�
C , denoted by U/R�

B ⊆ U/R�
C .

(3) If [x]�B ⊆ [x]�C for any x ∈ U and [x]�B 	= [x]�C for some x ∈ U , then we
call that classification U/R�

B is properly finer then R/R�
C , denoted by U/R�

B ⊂
U/R�

C .

For a ordered information system I� = (U, A, F ) and B ⊆ A, it is obtained
that U/R�

A ⊆ U/R�
B directly by Proposition 2.1(3) and above definition. And

an ordered information systems I� = (U, A, F ) be regarded as knowledge repre-
sentation system U/R�

A or knowledge A, as is same to classical rough set based
on equivalence relation.

Example 2.1. Given an ordered information system in Table 1.

Table 1 An ordered information system
U × A a1 a2 a3

x1 1 2 1
x2 3 2 2
x3 1 1 2
x4 2 1 3
x5 3 3 2
x6 3 2 3

If denote B = {a1, a2}, from the table we have

[x1]
�
A = {x1, x2, x5, x6};
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[x2]
�
A = {x2, x5, x6};

[x3]
�
A = {x2, x3, x4, x5, x6};

[x4]
�
A = {x4, x6};

[x5]
�
A = {x5};

[x6]
�
A = {x6};

and

[x1]
�
B = {x1, x2, x5, x6};

[x2]
�
B = {x2, x5, x6};

[x3]
�
B = {x1, x2, x3, x4, x5, x6};

[x4]
�
B = {x2, x4, x5, x6};

[x5]
�
B = {x5};

[x6]
�
B = {x5, x6}.

Thus, it is obviously that U/R�
A ⊆ U/R�

B, i.e., classification U/R�
A is finer

than classification U/R�
B.

For simple description, in the following information systems are based on
dominance relations generally, i.e., ordered information systems.

3 Rough Entropy of Knowledge in Ordered Information
Systems

In classical rough set theory, knowledge be regarded as partition of set of objects
to an information system. However, it is known that equality relations is replaced
by dominance relations in an ordered information system. Thus, knowledge be
regarded as classification of set of objects to an ordered information system by
section 2.

In this section, we will introduce rough entropy of knowledge and establish
relationships between roughness of knowledge and rough entropy in ordered in-
formation systems.

Firstly, let give the concept of rough entropy of knowledge in ordered infor-
mation systems.

Definition 3.1. Let I� = (U, A, F ) be an ordered information systems and
B ⊆ A. The rough entropy of knowledge B is defined as follows:

E(B) =
|U|∑

i=1

|[xi]
�
B |

|U | · log2 |[xi]
�
B| ,

where | · | is the cardinality of sets.
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Example 3.1. In Example 2.1, the rough entropy of knowledge A = {a1, a2, a3}
can be calculated by above definition, which is

E(A) =
4
6

· log2 4 +
3
6

· log2 3 +
5
6

· log2 5 +

2
6

· log2 2 +
1
6

· log2 1 +
1
6

· log2 1

=
2
3

· 2 +
1
2

· log2 3 +
5
6

· log2 5 +
1
3

= 4.39409

Proposition 3.1. Let I� = (U, A, F ) be an ordered information systems and
B ⊆ A. The following hold.

(1) E(B) can obtain its maximum |U | · log2 |U |, iff U/R�
B = U .

(2) E(B) can obtain its minimum 0, iff U/R�
B = {{x1}, {x2}, · · · , {x|U|}}.

Proof. It is straightforward by Definition 3.1.

From Proposition 3.1, it can be concluded that information quantity provided by
knowledge B is zero when its rough entropy reaches maximum, and its cannot
distinguish any two objects in U , when the classification of ordered informa-
tion systems is no meaning. When the rough entropy of knowledge B obtains
its minimum, the information quantity is the most and every objects can be
discriminated by B in the ordered information systems.

Theorem 3.1. Let I� = (U, A, F ) be an ordered information systems and
B1, B2 ⊆ A. If U/R�

B1
⊂ U/R�

B2
, then E(B1) < E(B2).

Proof. Because of U/R�
B1

⊂ U/R�
B2

, we have that [xi]
�
B1

⊆ [xi]
�
B2

for every
xi ∈ U . Thus there exists some xj ∈ U such that |[xj ]

�
B1

| < |[xj ]
�
B2

|. Hence, by
the Proposition 2.1 and Definition 3.1 we can obtain

|U|∑

i=1

|[xi]
�
B1

| · log2 |[xi]
�
B1

| <

|U|∑

i=1

|[xi]
�
B2

| · log2 |[xi]
�
B2

|,

i.e.,
E(B1) < E(B2).

From Theorem 3.1, we can find that rough entropy of knowledge decreased
monotonously as the granularity of information became smaller through finer
classifications of objects set U .

Corollary 3.1. Let I� = (U, A, F ) be an ordered information systems and
B1, B2 ⊆ A. If B2 ⊆ B1, then E(B1) ≤ E(B2).

Theorem 3.2. Let I� = (U, A, F ) be an ordered information systems and
B1, B2 ⊆ A. If U/R�

B1
= U/R�

B2
, then E(B1) = E(B2).

Proof. Since U/R�
B1

= U/R�
B2

, we have that [xi]
�
B1

= [xi]
�
B2

for every xi ∈ U .
Thus, it is obtain E(B1) = E(B2) directly.
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The theorem states that two equivalence knowledge representation systems have
same rough entropy.

Theorem 3.3. Let I� = (U, A, F ) be an ordered information systems and
B1, B2 ⊆ A. If U/R�

B1
⊆ U/R�

B2
and E(B1) = E(B2), then U/R�

B1
= U/R�

B2
.

Proof. Since E(B1) = E(B2), it follows that

|U|∑

i=1

|[xi]
�
B1

| · log2 |[xi]
�
B1

| =
|U|∑

i=1

|[xi]
�
B2

| · log2 |[xi]
�
B2

|. (∗)

From U/R�
B1

⊆ U/R�
B2

, we have that [xi]
�
B1

⊆ [xi]
�
B2

for every xi ∈ U . This
show that 1 ≤ |[xi]

�
B1

| ≤ |[xi]
�
B2

|. Thus, it is true that

|[xi]
�
B1

| · log2 |[xi]
�
B1

| ≤ |[xi]
�
B2

| · log2 |[xi]
�
B2

|.

By the formula (∗), it follows that

|[xi]
�
B1

| · log2 |[xi]
�
B1

| = |[xi]
�
B2

| · log2 |[xi]
�
B2

|.

So, we easily obtain |[xi]
�
B1

| = |[xi]
�
B2

|, for every xi ∈ U .
On the other hand, [xi]

�
B1

⊆ [xi]
�
B2

, we get [xi]
�
B1

= [xi]
�
B2

for every xi ∈ U .
Hence, U/R�

B1
= U/R�

B2
.

Theorem 3.3 states that if two knowledge representation systems exists inclusion
relation and their rough entropy are equal, then two knowledge representation
systems is equivalent.

Corollary 3.2. Let I� = (U, A, F ) be an ordered information systems and
B1, B2 ⊆ A. If B2 ⊆ B1 and E(B1) = E(B2), then U/R�

B1
= U/R�

B2
.

Example 3.2. We had got that U/R�
A ⊆ U/R�

B, if denote B = {a1, a2} in the
ordered information system of Example 2.1. Moreover, E(B) cab be calculated
easily, which is

E(B) =
4
6

· log2 4 +
3
6

· log2 3 +
6
6

· log2 6 +

4
6

· log2 4 +
1
6

· log2 1 +
2
6

· log2 2

=
2
3

· 4 +
1
2

· log2 3 + log2 6 +
1
3

= 6.37744

On the other hand, by Example 3.1, we obtained E(A) = 4.39409.
Thus, it is obvious that E(A) ≤ E(B).
However, if denote B′ = {a1} and B′′ = {a2} in the system of Example 2.1,

we have that

[x1]
�
B′ = [x3]

�
B′ = {x1, x2, x3, x4, x5, x6};
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[x2]
�
B′ = [x5]

�
B′ = [x6]

�
B′ = {x2, x5, x6};

[x4]
�
B′ = {x2, x4, x5, x6},

and

[x1]
�
B′′ = [x2]

�
B′′ = [x6]

�
B′′ = {x1, x2, x5, x6};

[x3]
�
B′′ = [x4]

�
B′′ = {x1, x2, x3, x4, x5, x6};

[x5]
�
B′′ = {x5}.

Furthermore, we can obtain that E(B′) = 8.88071 and E(B′′) = 9.16993, which
show E(B′) < E(B′′). While, U/R�

B′ ⊆ U/R�
B′′ doesn’t hold. So, it can be

concluded that the converse proposition of Theorem 3.1 does not hold.

4 Rough Entropy of Rough Sets in Ordered Information
Systems

In rough set theory, the roughness of a rough set can be measured by its rough
degree. So we give the rough degree of a rough set in ordered information systems.

Definition 4.1. Let I� = (U, A, F ) be an ordered information systems and
B ⊆ A. The rough degree of a rough set X ⊆ U about knowledge B is defined
as follows:

ρB(X) = 1 −
|R�

B(X)|

|R�
B(X)|

,

where | · | is the cardinality of sets.

From the above definition and Proposition 2.2, it is obvious to 0 ≤ ρB(X) ≤ 1,
and the following property can be obtained easily.

Theorem 4.1. Let I� = (U, A, F ) be an ordered information systems and
B1, B2 ⊆ A. If U/R�

B1
⊆ U/R�

B2
, then ρB1(X) ≤ ρB2(X), for any rough set

X ⊆ U .

Example 4.1. In Example 2.1, we have known U/R�
A ⊆ U/R�

B, i.e., classification
U/R�

A is finer than classification U/R�
B in the system of Table 1.

For X = {x4, x5, x6}, we have

R�
A(X) = {x4, x5, x6}, R�

A(X) = U ;

R�
B(X) = {x5, x6}, R�

B(X) = U.

Thus, by calculating, the rough degrees of X about knowledge B and A can
be obtained respectively, which are

ρA(X) =
1
2
; ρB(X) =

2
3
;
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Obviously, ρA(X) ≤ ρB(X).
From Theorem 4.1 and Example 4.1, we can get that coarser is the classifica-

tion of ordered information systems, smaller is not the rough degree of a rough
set of the system.

However, it can be find that the uncertainty measure, i.e., rough degree, of a
rough set is not exact in ordered information systems by the following example.

Example 4.2. Let X ′ = {x3, x5, x6} in Example 4.1, we get

R�
A(X ′) = R�

B(X ′) = {x5, x6};

R�
A(X ′) = R�

B(X ′) = U.

So have
ρA(X) = ρB(X) =

1
3

.

In other words, the uncertainty of knowledge B is larger than that of A in
Example 4.2, but X ′ has the same rough degree. Therefore, it is necessary to
find a new and more accurate uncertainty measure for rough sets in ordered
information systems.

Definition 4.2. Let I� = (U, A, F ) be an ordered information systems and
B ⊆ A. The rough entropy of a rough set X ⊆ U about knowledge B is defined
as follows:

EB(X) = ρB(X)E(B).

From Definition 4.2, the rough entropy of rough sets is related not only to its own
rough degree, but also to the uncertainty of knowledge in the ordered information
systems.

Example 4.3. The rough entropy of X ′ in Example 4.2 is calculated about
knowledge B and A respectively, which are

EB(X ′) = ρ(X ′)E(B) =
1
3

× 6.37744 = 2.12579;

EA(X ′) = ρ(X ′)E(A) =
1
3

× 4.39409 = 1.46468.

Thus, we have
EA(X ′) < EB(X ′).

By this example, it is obvious that the rough entropy of rough sets is more
accurate than the rough degree to measure the roughness of rough sets in ordered
information systems.

Furthermore, the following property can be obtained about the entropy of
rough sets.

Theorem 4.2. Let I� = (U, A, F ) be an ordered information systems and
B1, B2 ⊆ A. If U/R�

B1
⊂ U/R�

B2
, then EB1(X) < EB2(X), for any X ⊆ U .

Proof. It is straightforward by Theorem 3.1 and Theorem 4.1.
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Corollary 4.1. Let I� = (U, A, F ) be an ordered information systems and
B1, B2 ⊆ A. If B2 ⊆ B1, then EB1(X) ≤ EB2(X) for any X ⊆ U .

It can be deduced from the above propositions that the rough entropy of a
rough set monotonously decreases as the classification becomes finer in ordered
information systems.

5 Conclusions

Rough set theory is a new mathematical tool to deal with vagueness and un-
certainty. Development of a rough computational method is one of the most
important research tasks. While, in practise, ordered information system con-
fines the applications of classical rough set theory. In this article, a measure
to knowledge and its important properties are established by proposed rough
entropy in ordered information systems. We prove that the rough entropy of
knowledge and rough set decreases monotonously as the granularity of informa-
tion becomes finer, and obtain some conclusions, which is every helpful in future
research works of ordered information systems.
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